The global existence of solutions and asymptotic stability of a reaction-diffusion system
نویسندگان
چکیده
This paper studies the solutions of a reaction–diffusion system with nonlinearities that generalise the Lengyel–Epstein and FitzHugh–Nagumo nonlinearities. Sufficient conditions are derived for the global asymptotic stability of the system’s solutions and confirmed through numerical Examples.
منابع مشابه
Global Existence and Convergence of Solutions to a Cross-Diffusion Cubic Predator-Prey System with Stage Structure for the Prey
We study a cubic predator-prey system with stage structure for the prey. This system is a generalization of the two-species Lotka-Volterra predator-prey model. Firstly, we consider the asymptotical stability of equilibrium points to the system of ordinary differential equations type. Then, the global existence of solutions and the stability of equilibrium points to the system of weakly coupled ...
متن کاملGlobal Asymptotic Stability of Traveling Waves in Delayed Reaction-Diffusion Equations
The existence and comparison theorem of solutions is first established for the quasimonotone delayed reaction-diffusion equations on R by appealing to the theory of abstract functional differential equations. The global asymptotic stability, Liapunov stability and uniqueness of traveling wave solutions are then proved by the elementary superand sub-solution comparison and squeezing methods. Sup...
متن کاملPermanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response
Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.
متن کاملGlobal asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models
This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called...
متن کاملPermanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales
In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017